skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scott, Ethan A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Aluminum scandium alloys and their intermetallic phases have arisen as potential candidates for the next generation of electrical interconnects. In this work, we measure the in-plane thermal conductivity and electron–phonon coupling factor of aluminum scandium alloy thin films deposited at different temperatures, where the temperature is used to control the grain size and volume fraction of the Al3Sc intermetallic phase. As the Al3Sc intermetallic formation increases with higher deposition temperature, we measure increasing in-plane thermal conductivity and a decrease in the electron–phonon coupling factor, which corresponds to an increase in grain size. Our findings demonstrate the role that chemical ordering from the formation of the intermetallic phase has on thermal transport. 
    more » « less
  3. null (Ed.)